
Probabilistic Methods in Combinatorics

Instructor: Oliver Janzer

Solutions to Assignment 6

Problem 1. Let 0 < p1, p2, . . . , pn ≤ 1 be reals. For every i ∈ [n], let Xi be a Bernoulli

random variable of parameter pi, such that X1, . . . , Xn are independent. Show that

P

∣∣∣∣∣
n∑

i=1

Xi −
n∑

i=1

pi

∣∣∣∣∣ ≥ 10

√√√√ n∑
i=1

pi

 ≤ 1/100.

Solution. As the random variables X1, . . . , Xn are independent, we have

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var (Xi) =
n∑

i=1

pi(1− pi) ≤
n∑

i=1

pi.

Since E (
∑n

i=1 Xi) =
∑n

i=1 pi, it follows by Chebyshev’s inequality that

P

∣∣∣∣∣
n∑

i=1

Xi −
n∑

i=1

pi

∣∣∣∣∣ ≥ 10

√√√√ n∑
i=1

pi

 ≤ Var (
∑n

i=1Xi)

100
∑n

i=1 pi
≤

∑n
i=1 pi

100(
∑n

i=1 pi)
≤ 1

100
.

Problem 2. Let X be a random variable taking nonnegative integer values. In the lectures

we have seen that P(X = 0) ≤ Var(X)
E[X]2

. Prove that in fact

P(X = 0) ≤ Var(X)

E[X2]
.

Solution. Let p = Pr[X = 0]. We have E[X] = (1 − p)E[X | X > 0] and E[X2] =

(1− p)E[X2 | X > 0]. Using E[X2 | X > 0] ≥ E[X | X > 0]2, we get E[X]2

E[X2]
≤ 1− p. Hence,

Pr[X = 0] = p ≤ 1− E[X]2

E[X2]
=

Var[X]

E[X2]
.

Problem 3. Let G = (V,E) be a simple graph with n vertices and m edges, and let k be a

positive integer. Prove that:
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(a) There are at least kn · (1− m
k
) proper vertex-colourings of G with k colours.

(b) There are at most kn · k−1
m

proper vertex-colourings of G with k colours.

(c) The upper bound from (b) can be improved to kn · k−1
k+m−1

.

Solution. Colour each vertex independently at random using one of the k colours. Let X

be the number of edges whose two endpoints have the same colour. Note that the colouring

is proper if and only if X = 0.

(a) For any fixed edge, this probability that both endpoints get the same colour is 1/k.

Since there are m edges in the graph, we have E[X] = m/k. By Markov’s inequality,

P (X ≥ 1) ≤ E[X], so with probability at least 1 − m/k, we have X = 0, i.e. the

colouring is proper. Since there are kn colourings in total, the proof is complete.

(b) Here we use the inequality P(X = 0) ≤ Var(X)
E[X]2

. Let us compute Var(X). Note that

X =
∑

e∈E(G) Xe, where Xe is 1 if the endpoints of e get the same colour and 0

otherwise. Now Var(X) = E[X2] − E[X]2 =
∑

e,f∈E(G)(E[XeXf ] − E[Xe]E[Xf ]). For

any e ∈ E(G), E[Xe] is the probability that the endpoints of e have the same colour,

which is 1/k. Also, for e, f ∈ E(G), E[XeXf ] is the probability that the endpoints of

e have the same colour and the endpoints of f have the same colour, which is 1/k2

when e ̸= f (and 1/k when e = f). Hence, Var(X) =
∑

e∈E(G)(1/k − 1/k2) = m · k−1
k2

.

Therefore P(X = 0) ≤ Var(X)
E[X]2

= m(k−1)/k2

m2/k2
= k−1

m
.

(c) In this part we use the stronger bound P(X = 0) ≤ Var(X)
E[X2]

. Note that E[X2] =∑
e,f∈E(G) E[XeXf ] = m · 1

k
+m(m− 1) · 1

k2
, so

P(X = 0) ≤ m(k − 1)/k2

m/k +m(m− 1)/k2
=

k − 1

k +m− 1
.

Problem 4. Let v1 = (x1, y1), . . . , vn = (xn, yn) be n two-dimensional vectors, where each

xi and each yi is an integer whose absolute value does not exceed 2n/2/(100
√
n). Show that

there are two disjoint sets I, J ⊆ {1, 2, . . . , n} such that∑
i∈I

vi =
∑
j∈J

vj.

Solution. Let t = ⌊2n/2/(100
√
n)⌋. Let ϵ1, . . . , ϵn be independent random variables taking

values 0 and 1 with probability 1/2. Let X =
∑

i≤n ϵixi. It was shown in Section 4.1 in
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lectures (in the proof of Theorem 4.3) that

P
(
|X − E[X]| ≥ t

√
n
)
≤ 1

4
.

Similarly, if Y =
∑

i≤n ϵiyi, then

P
(
|Y − E[Y ]| ≥ t

√
n
)
≤ 1

4
.

Thus, with probability at least 1/2, we have both |X −E[X]| < t
√
n and |Y −E[Y ]| < t

√
n.

This means that for at least 2n−1 choices (ϵ1, . . . , ϵn) ∈ {0, 1}n, we have∑
i≤n

ϵixi ∈
[
E[X]− t

√
n,E[X] + t

√
n
]

and ∑
i≤n

ϵiyi ∈
[
E[Y ]− t

√
n,E[Y ] + t

√
n
]
.

Observe that (2t
√
n+1)2 ≤ (2n/2/50+1)2 < 2n−1 for n ≥ 2. But both [E[X]− t

√
n,E[X] + t

√
n]

and [E[Y ]− t
√
n,E[Y ] + t

√
n] contain at most 2t

√
n + 1 integers, so there must exist dis-

tinct subsets I, J ⊂ [n] such that
∑

i∈I xi =
∑

j∈J xj and
∑

i∈I yi =
∑

j∈J yj. That is,∑
i∈I vi =

∑
j∈J vj. By removing I ∩ J from both I and J , we can make sure that there are

such subsets with I and J disjoint.

Remark. This is a two-dimensional analogue of sum-free set problem in the lecture notes:

instead of a1, a2, · · · ∈ [n] (in section 4.1), we have v1, v2, · · · ∈ {0, . . . , B}2 here. What we

proved is that the largest sum-free set in {0, . . . , B}2 has size at most 2 log2B+log2 log2B+

O(1). In addition, the largest size is at least 2 log2B because of the following construc-

tion. Consider (2i, 0), (2i, 2i) for all i ∈ {0, 1, . . . , ⌊log2B⌋}. If
∑

i∈I0(2
i, 0) +

∑
i∈I1(2

i, 2i) =∑
i∈I′0

(2i, 0) +
∑

i∈I′1
(2i, 2i), then we know that

∑
i∈I1 2

i =
∑

i∈I′1
2i, thereby I1 = I ′1. Then,

a similar argument shows I0 = I ′0. This means these 2 log2B vectors form a sum-free set in

{0, . . . , B}2.
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